RAG Bot for Documentation
An intelligent documentation assistant that uses RAG to provide accurate, contextual answers from technical documentation and knowledge bases.
RAG Bot for Documentation
An intelligent documentation assistant that leverages Retrieval-Augmented Generation (RAG) to provide accurate, contextual answers from technical documentation and knowledge bases. This lab project demonstrates how to build a production-ready documentation bot using Azure services.
Project Overview
This RAG bot can ingest technical documentation, API references, and knowledge base articles to provide instant, accurate answers to user queries with proper citations and source links.
Key Features
- Semantic search across multiple documentation sources
- Real-time answer generation with source citations
- Support for PDF, Markdown, and HTML documentation
- Azure Functions integration for serverless deployment
- Web interface for easy interaction
- API endpoints for integration with other systems
Technical Architecture
Architecture Overview
The RAG bot architecture shows the flow from user query through Azure Functions to OpenAI for generation, with Azure AI Search providing relevant documentation context.
Technology Stack
- **Backend**: Python with FastAPI for API development
- **AI Services**: Azure OpenAI GPT-5 for text generation
- **Search**: Azure AI Search for vector-based document retrieval
- **Deployment**: Azure Functions for serverless hosting
- **Storage**: Azure Blob Storage for document storage
- **Frontend**: Simple web interface with HTML/CSS/JavaScript
Implementation Details
The RAG bot uses a sophisticated pipeline to process documentation and generate accurate responses. Here's how it works:
Document Ingestion
Documents are processed, chunked, and embedded into Azure AI Search with metadata for efficient retrieval.
Query Processing
User queries are analyzed and converted to search vectors for semantic matching against the document index.
Context Retrieval
Azure AI Search finds the most relevant document chunks based on semantic similarity and relevance scoring.
Answer Generation
GPT-5 generates contextual answers using the retrieved documentation as grounding context.
Code Implementation
# RAG Bot Core Implementation
from azure.search.documents import SearchClient
from azure.core.credentials import AzureKeyCredential
from openai import AzureOpenAI
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import logging
class QueryRequest(BaseModel):
question: str
context: str = ""
class RAGBot:
def __init__(self, search_endpoint, search_key, openai_endpoint, openai_key):
self.search_client = SearchClient(
endpoint=search_endpoint,
index_name="documentation-index",
credential=AzureKeyCredential(search_key)
)
self.openai_client = AzureOpenAI(
azure_endpoint=openai_endpoint,
api_key=openai_key,
api_version="2024-02-15-preview"
)
def search_documents(self, query: str, top_k: int = 5):
"""Search for relevant documentation chunks"""
try:
results = self.search_client.search(
query,
top=top_k,
select=["content", "source", "title", "url"],
include_total_count=True
)
return list(results)
except Exception as e:
logging.error(f"Search error: {e}")
return []
def generate_answer(self, question: str, context_docs: list):
"""Generate answer using retrieved context"""
if not context_docs:
return "I couldn't find relevant documentation to answer your question."
# Prepare context from retrieved documents
context_text = "\n\n".join([
f"Source: {doc['source']}\n{doc['content']}"
for doc in context_docs
])
# Create prompt for GPT-5
system_prompt = """You are a helpful documentation assistant. Use the provided
documentation context to answer questions accurately. Always cite your sources
and provide relevant links when available."""
user_prompt = f"""
Question: {question}
Documentation Context:
{context_text}
Please provide a helpful answer based on the documentation above:
"""
try:
response = self.openai_client.chat.completions.create(
model="gpt-5",
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}
],
temperature=0.3,
max_tokens=1000
)
return {
"answer": response.choices[0].message.content,
"sources": [doc['source'] for doc in context_docs],
"confidence": self.calculate_confidence(context_docs)
}
except Exception as e:
logging.error(f"OpenAI error: {e}")
raise HTTPException(status_code=500, detail="Error generating answer")
def calculate_confidence(self, context_docs: list):
"""Calculate confidence score based on search results"""
if not context_docs:
return 0.0
# Simple confidence based on number and relevance of results
avg_score = sum(doc.get('@search.score', 0) for doc in context_docs) / len(context_docs)
return min(avg_score / 10.0, 1.0) # Normalize to 0-1 range
# FastAPI application
app = FastAPI(title="RAG Documentation Bot")
rag_bot = RAGBot(
search_endpoint=os.getenv("AZURE_SEARCH_ENDPOINT"),
search_key=os.getenv("AZURE_SEARCH_KEY"),
openai_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
openai_key=os.getenv("AZURE_OPENAI_KEY")
)
@app.post("/ask")
async def ask_question(request: QueryRequest):
"""Main endpoint for asking questions"""
try:
# Search for relevant documents
context_docs = rag_bot.search_documents(request.question)
# Generate answer
result = rag_bot.generate_answer(request.question, context_docs)
return {
"question": request.question,
"answer": result["answer"],
"sources": result["sources"],
"confidence": result["confidence"]
}
except Exception as e:
logging.error(f"Error processing question: {e}")
raise HTTPException(status_code=500, detail="Internal server error")
Performance Metrics
Use Cases
- **Developer Support**: Quick answers to API documentation questions
- **Customer Service**: Automated responses to product documentation queries
- **Internal Knowledge**: Company documentation and process guides
- **Training**: Interactive learning from technical documentation
- **Compliance**: Automated responses to policy and procedure questions
Getting Started
To get started with this RAG bot, follow these steps:
Prerequisites Checklist
Ready to Deploy
This lab project is production-ready and can be deployed to Azure Functions with minimal configuration. The code includes comprehensive error handling, logging, and monitoring capabilities.
Future Enhancements
- Multi-language support for international documentation
- Real-time document synchronization and updates
- Advanced analytics and usage reporting
- Integration with popular documentation platforms
- Custom training for domain-specific terminology
- Voice interface for hands-free interaction
Explore the RAG Bot
Ready to build your own documentation assistant? Check out the code and start experimenting with RAG technology.